
Zeta® For Printed Circuit Boards

INTEGRAL'S FAMILY

Technical Support for the family of businesses

- **Technical Services**
- **Field Installations**
- **Process Development**
- **Process Audits**
- **Defect Analysis**

COMPOSITES

• Zeta[®] is a new family of PCB materials.

- Zeta[®] materials are based on high performance polymers in FILM form.
- Zeta[®] materials do not contain fiberglass.
- Zeta[®] materials are provided as C stage or B stage films combined with copper foil.
- Zeta[®] provides PCB fabricators an alternative to RCC and liquid dielectrics.

Zeta Applications

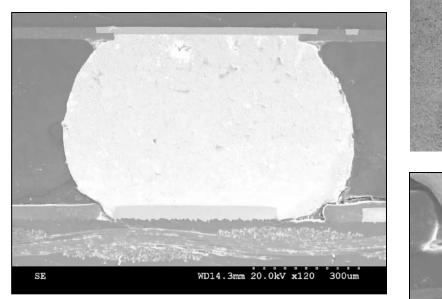
Lead Free - OEMs

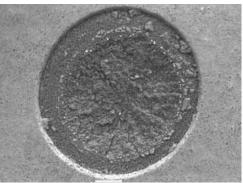
- Pad Cratering
- Surface Copper Peel Strength
- CAF resistant
- High Tg and Td, Low CTE
- Halogen Free

HDI – PCB shops+ OEMs

- Thickness reduction
- Low Dk and Df
- Via Formation
- Plating
- Multiple Lam Cycles (>10)

GENERATION HDI NRXT

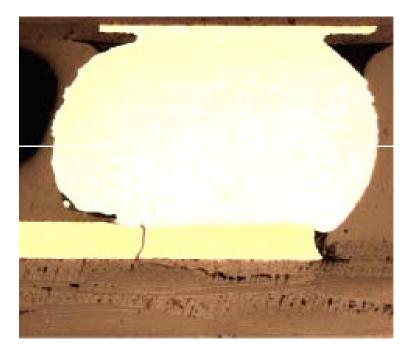

Zeta Lead Free Assembly Applications

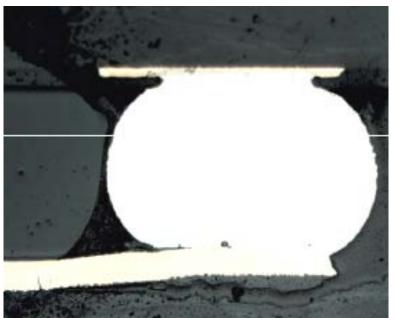

Lead Free - OEMs


- Pad Cratering
- Surface Copper Peel Strength
- CAF resistant
- High Tg and Td, Low CTE
- Halogen Free

PAD "CRATERING"

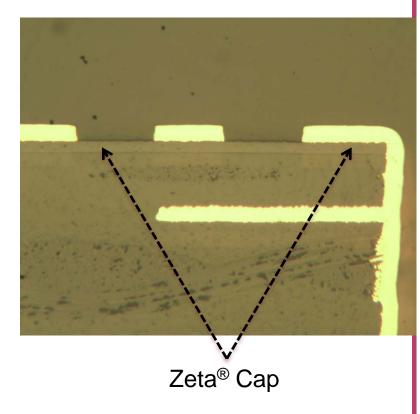
- Mechanically induced fracture in the resin between copper foil and outermost layer of fiberglass. May be within the resin or at the resin to glass interface.
- Pad remains connected to the component (usually BGA) and leaves a "Crater" in the PCB.

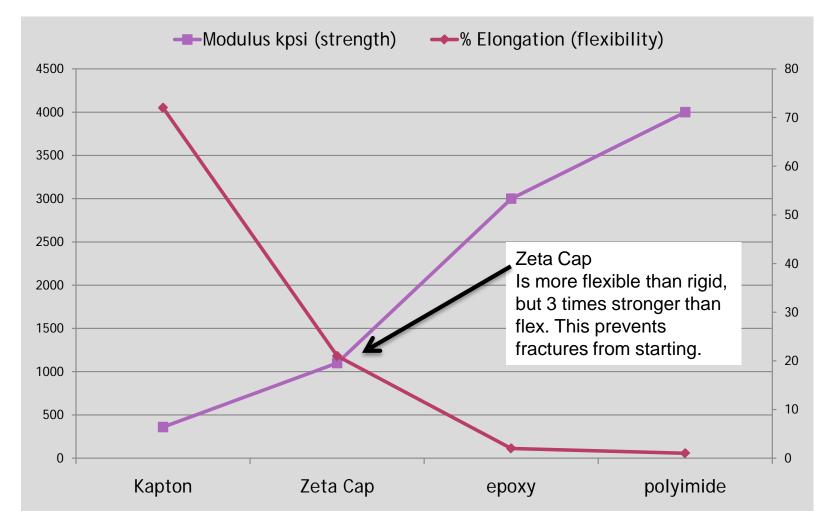




PAD "CRATERING" = Opens

• Fractures start in the dielectric (resin) and works through the copper trace creating an open circuit.




ZETA® Cap for Pad Cratering

"Drop in" to existing designs

- Unique material properties, Zeta[®] acts as a crack stop.
- Pad Crater solution without changing base materials.
- Reduces need for under-fill.
- Resistant to field handling, installation and service issues.
- Improves Drop test performance.
 - Hand held devices
- Greater component rework success.

ZETA® CAP MECHANICAL PROPERTIES

ZETA® CAP DETAILS

Copper

- ¼ oz (9 μm), 3/8 oz (12 μm), ½ oz (18 μm)
- Low tooth profile
- 6 to 7 pound peel strength
- RTF finish

• C stage Dielectric

- 0.5 mil (12 μm), 1.0 mil (25 μm), 1.5 mil (38 μm)
- Non-copper side treated for prepreg bonding
- Tg > 300°C, Td > 500°C
- @ 2GHz Dk = 3.0, Df = .005
- Dielectric Strength 4900 v/mil
- Halogen Free

ZETA® CAP STATUS

• UL

• 94-V0, MOT 155°C

• Pad Crater Testing

- 1.0 mil with Pad Crater TV, hot pin pull test with OEM #1
- Prototype boards built with 0.5 and 1.0 mil with OEM #1
- Pad Crater TV PCBs under construction for OEM #2
- Pad Crater TV design completed for OEM #3, PCB construction to follow.

LEAD FREE ASSEMBLY SUMMARY

• Questions regarding Zeta[®] lead free assembly applications?

Zeta HDI Applications

HDI – PCB shops+ OEMs

- Thickness reduction
- Low Dk and Df
- Via Formation
- Plating
- Multiple Lam Cycles (>10)

ZETA® C STAGE/ B STAGE PRODUCTS

- Copper clad high Tg, low CTE fully cured dielectric.
- Used with standard prepregs or Zeta[®] Bond.

<u>Zeta[®] Bond</u>

- Hi Tg "B" stage film that is glass free.
- Thickness is easily tailored to fill areas around plated circuits.
- Hi peels, even after multiple lam cycles.

<u>Zeta[®] Lam </u>

- Zeta[®] Cap + Zeta[®] Bond
- Ready to use in Lay-up without Prepreg

ZETA® BOND SE

- New epoxy technology for multiple lam cycles
 - Non-dicy
 - Non-phenolic
- Room temp storage
- High Tg and High Td
- High flow and fill
- Low moisture absorbing
 - Tg after 72 hours in boiling water- 174°C
 - Moisture uptake @ 72 hours in boiling water 1.0%
 - Moisture uptake for Kapton, 24 hrs room temp -2.8%
- Requires change in press cycle
 - Start temp is 350°F instead of 200 250°F

SE RESIN LAMINATION

• Epoxy based high density crosslinking resin

- Requires more heat to gel
- Much longer shelf life > 1 year
- Does not require refrigeration
- Non-brittle B stage
- Halogen free and not brittle after cure
- 350°F to gel in 15 minutes
- 375 ^oF for 90 minutes to cure

<u>Zeta[®] LAM</u>

- C-stage layer provides a polymer solution for glass fabric;
 - Consistent thickness control after lamination
 - Very high dielectric strength
 - Lower Z-axis CTE than other glass free dielectrics materials
 - Lower Dk, Lower loss
 - High copper peels at high temperatures
- B-stage layer provides;
 - Bonding and fill of circuits and vias
 - Various thicknesses of resins are available for fill requirements
 - Curable with standard PCB laminating equipment (375°F)
 - Long shelf life, 1 year at room temperature
- IPC-4563
 - Example -
 - Zeta Lam C25EP/B38E TSL AA
 - =1/3 oz copper + 1.0 mil "C" stage polyimide +1.5 mils of "B" stage epoxy

Copper

C-Stage Polyimide

B-Stage Epoxy

<u>Zeta[®] LAM</u>

- Available Coppers
 - ¼ oz (9 micron)
 - 3/8 oz (12 micron)
 - ½ oz (18 micron)

C-stage layer

- ½ mil (12 micron)
- 1 mil (25 micron)
- 1.5 mil (38 micron)

B-stage layer

- 1 mil (25 micron)
- 1.5 mil (38 micron)
- 2.0 mil (50 micron)

Copper

C-Stage Polyimide

B-Stage Epoxy

HDI CONSTRUCTION TYPES

Sequential lamination

- Starts with double sided core
- Materials can be
 - Prepreg
 - RCC
 - Photo dielectric (liquid and film)
 - Screenable liquid

Parallel lamination

- Process is used for thru hole multilayers
- For Any Layer HDI, z-axis interconnects might be;
 - Conductive Ink
 - Copper posts/cones
- "Subs" (cannot produce "Any Layer")
 - Combination of sequential and parallel

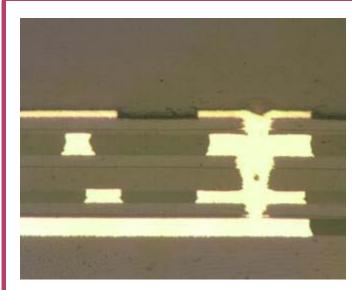
HDI CONSTRUCTION TYPES

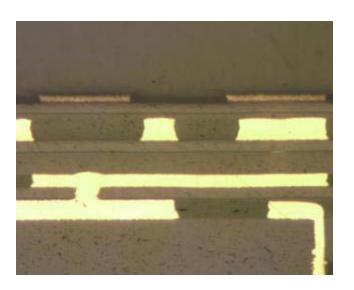
Sequential lamination

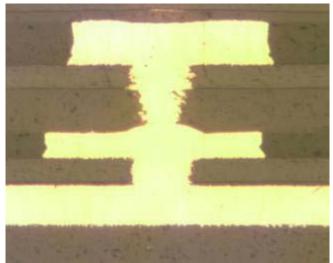
- Advantages
 - "Any Layer" HDI capable
 - Uses standard PCB processing
 - Thin structures possible
- Disadvantages
 - Requires multiple laminations

Parallel lamination

- Advantages
 - High layer count possible with one lamination cycle
- Disadvantages
 - Z-axis interconnect must be formed prior to lamination
 - May require special process/equipment/materials
 - Very thin layers (< 2 mil/50µ) hard to handle


Zeta can be used in both applications!

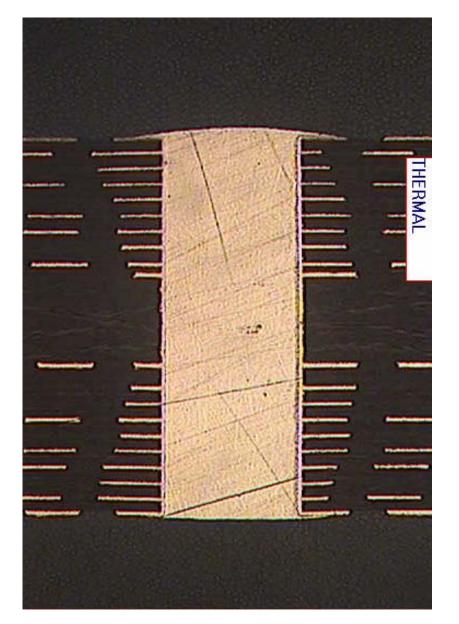

DK IMPACT ON HDI


• Finer copper traces are great for HDI

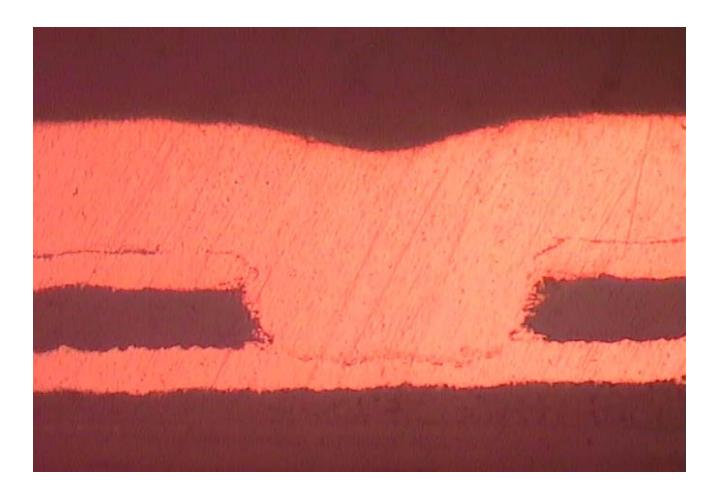
- But harder to produce with high yield
- As thickness gets reduced, so does Impedance
 - To maintain the same Impedance;
 - Line width must be reduced, or...
 - Dk is reduced, this has the same effect.
 - Zeta produces the same Impedance at half the thickness with the same line width.
- Thinner structures at the same Impedance have;
 - Easier to drill and plate vias
 - Lower via inductance
 - Lower thermal impedance.

Zeta[®] for stacked vias

Sequential lamination is a popular way to make HDI structures. This requires one lamination cycle for each layer.


9 LAMINATION CYCLES!

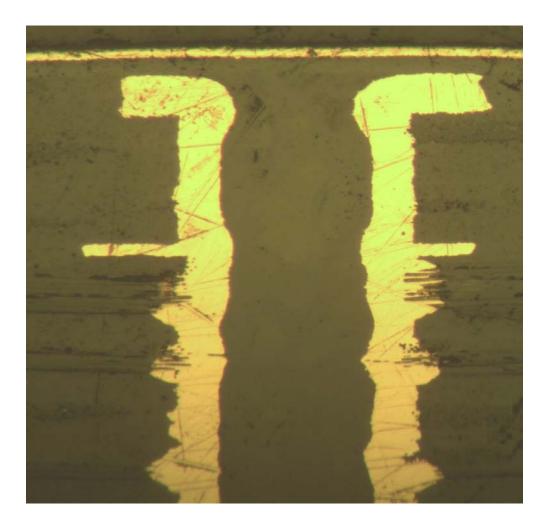
Thermal stress coupon


0.008" core + 9 layers of Zeta[®] Lam on each side.

20 layers

Overall thickness 0.035"

COPPER VIA FILL WITH STANDARD PLATING BATH


VIA CAP AND FILL IN ONE STEP

□ Zeta[®] Bond SE used to fill the via

Testing applications eliminating the via fill process steps

Zeta[®] Bond SE resin available in thicknesses to meet many designs in filling via's

Glass free allows for more resin to flow into vias

ZETA® LAM SE STATUS

- First Zeta Lam boards built and shipped February 2009, East Coast PCB shop
- Zeta Lam boards shipped in October 2009, West Coast PCB shop.
- Zeta Lam boards shipped by another West Coast PCB shop in March of 2009.
- Zeta Lam boards built and shipped from Bay Area PCB shop for ongoing design with "Any Layer HDI" using 9 lamination cycles.

UL STATUS

Zeta Cap has 94-V0 rating

• Zeta Lam/Bond SE flame testing in process

94-V0 expected

• Zeta Lam/Bond MOT should be 155 °C

IPC

● IPC-4563

- Resin coated copper (RCC)
- Many items are AABUS (as agreed between user and supplier)
- Cover C-stage/B-stage combinations
- Spec allows for many different product types
- This is the best fit for Zeta[®] Lam and ZRC

IPC-JPCA-4104

- High Density Interconnect (HDI) and Micro Via materials
 - Covers dielectrics, foils and z-axis connections
 - Includes many different types of materials
 - Does not specify C-stage/B-stage combinations

ZETA MATERIALS HAVE EXCELLENT THERMAL PROPERTIES FOR **GLASS** FREE FILMS

Material	Tg	Td	Z-axis CTE	Comments
Zeta Cap	>300°C	>500°C	19 ppm/⁰C	Glass free film
Zeta Bond SE	180°C	400°C	60 ppm/⁰C	Glass free film
Zeta Lam SE	N/A	N/A	40 ppm/⁰C	Glass free film
Dicy cured Hi Tg epoxy	180°C	300°C	55 ppm/⁰C	Glass re-enforced 0.020" core
Phenolic Epoxy	180⁰C	340°C	45 ppm/⁰C	Glass re-enforced 0.020" core
Flex Epoxy Bonding Film	100°C	285°C	>150 ppm/⁰C	Glass free film

ZETA MATERIALS HAVE EXCELLENT ELECTRICAL PROPERTIES FOR **GLASS** FREE FILMS

Material	Dk (2 GHz)	Df	Breakdown Voltage	Comments
Zeta Cap	3.0	0.005	4900 v/mil	Glass free film
Zeta Bond SE	3.2	0.010	2500 v/mil	Glass free film
Zeta Lam SE	3.2	0.010	4900 v/mil	Glass free film
Dicy cured Hi Tg epoxy	4.2	0.014	1000 v/mil	Glass re-enforced 0.020" core
Phenolic Epoxy	4.0	0.021	1350 v/mil	Glass re-enforced 0.020" core
Flex Epoxy Bonding Film	3.2	0.020	3840 v/mil	Glass free film

THERMAL PROPERTIES

Manufacturer	Part	Thermal Conductivity (W/mK)	Thermal Resistance (°C cm²/W)
Berquist	MP-06503	*1.3	0.58
	HT-04503	*2.2	0.32
	HT-07006	*2.2	0.71
	CML-11006	*1.1	1.35
Laird	T-LAM SS 1KAO4	*3	0.34
	T-LAM SS 1KAO6	*3	0.52
	T-LAM SS 1KA08	*3	0.70
	T-LAM SS HTD04	*2.2	0.46
	T-LAM SS HTD06	*2.2	0.69
Integral Tech.	Zeta Bond 1 mil	**0.58	0.44
	Zeta Cap 1 mil	**0.43	0.59
Isola	370HR 106	**0.44	1.35
	406 106	**0.28	2.12
Dupont	FR 1 mil	**0.36	0.71
	Kapton 1 mil	**0.14	1.82
	LF 1 mil	**0.22	1.16
	CooLam LX03517016	*0.8	0.25
	CooLam LX07022016	*0.8	0.29

* values sited from manufacturers data sheet
** values from independent lab testing on "C" stage

HIGH DENSITY INTERCONNECT SUMMARY

• Questions regarding Zeta[®] HDI applications?

SUMMARY

ZETA® HAS TWO BROAD BASE APPLICATIONS PAD CRATER FIX

HDI

AS OF NOW, PAD CRATERING HAS NO OTHER FIX

We are being told this by many OEM's

ZETA[®] FOR HDI

MANY COMBINATIONS, APPLICATIONS POSSIBLE BE CREATIVE! SAMPLES ARE AVAILABLE!